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Abstract

This paper proposes an alternate method for finding several Pareto opti-

mal points for a general nonlinear multicriteria optimization problem, aimed

at capturing tile tradeoff among the various conflicting objectives. It can

be rigorously proved that this method is completely independent of tile rel-
ative scales of the functions and is quite successful in producing an evenly

distributed set of points in the Pareto set given an evenly distributed set

of 'weights', a property which the popular method of linear combinations

lacks. Further, this method can be easily extended in case of more than two

objectives while retaining the computational efficiency of continuation-type

algorithms, which is an improvement over homotopy techniques for tracing
the tradeoff curve.
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1 Introduction

A wide variety of problems arising in design optimization of en-

gineering systems are essentially multicriteria in nature (see, for example,

Eschenauer, Koski and Osyczka [1] and Statnikov and Matusov [2]). For

example, a typical bridge-construction design might involve simultaneously

minimizing the total mass of the structure and maximizing its stiffness. How-

ever, it is highly improbable that these conflicting objectives would both be

'extremized' by the same design, hence some tradeoff between the objec-

tives functions is desired to ensure an efficient design• Mathematically such

a multicriteria optimization problem can be written as:

where

min F(x) =
xEC

fl(x)

f2(x)

f : _N _ _n, h : _N _ _ne and g

differentiable mappings, and a E (_ U

the number of variables, n the number

of equality and inequality constraints.

n >_2, ...(MOP)

c = {x: h(x) = O,g(x) < o,a <_x <_b},

: ,_N __+_i are twice continuously

{-ec}) N, b E (_ U {oc}) x, N being

of objectives, ne and ni the number

Since no single x" would generally

concept of optimality which is useful in

of Pareto optimality, as defined below:

minimize every fi simultaneously, a

the multiobjective framework is that

Definition: A point x* E C is said to be (globally) Pareto optimal or

a (globally) efficient point or a non-dominated or a non-inferior point for

(MOP) if and only if /Sx E C such that F(x) < F(x*) with at least one

strict inequality (the <_ implies term-by-term inequality).

The shadow minimum, F*, is defined as the vector containing the indi-

vidual global minima, f[, of the objectives, i.e.,

:k

fl
F*= f_



(We assume here and henceforth the existence of a minimum for each of

our objectives.) The shadow minimum could thus be attained only in the

rare case when a single x minimizes all the objective functions. However, in

practical situations, the best we can hope for is to get close to the shadow

minimum and assure that there is an agreeable trade-off among the multiple

objectives.

Very often in engineering applications the desired solution is a whole

collection of Pareto optimal points, representative of the entire spectrum

of efficient solutions. Thus ideally, the desired solution is the entire Pareto

optimal set. which can be obtained for some small problems which allow

themselves to be treated parametrically, resulting in closed-form expressions

for the Pareto set (see Lin [3]). More recently, attempts have been made

to approximate the entire curve of Pareto optimal solutions in bi-objective

problems using techniques which trace the curve of parametrized optima

(see Rakowska, Haftka and Watson [4], Rao and Papalambros [5], Lundberg

and Poore [6]). The next, best solution, which is very acceptable in most

applications, is a set of Pareto optimal points obtained by combining the

multiple objectives into a single objective function and minimizing the single

objective over various values of the parameters used to combine the objec-

tives. For example, it is possible to generate a set of Pareto optimal points

by minimizing a convex combination of the objectives, a.TF(x), over x E C,

where a _> 0 (component:wise) and _i'=1 _'i = 1, and performing the mini-

mization for different choices of a (see, among many others, Koski [7]). In

this article, we propose a new method for generating Pareto optimal points

which is at least as efficient as these methods and, unlike the techniques for

tracing the curve of Pareto optimal solutions, can be applied to problems

with more than two objectives.

2 Preliminaries

First let. us introduce some terminology:

Convex Hull of Individual Minima (CHIM): Let x_ be the re-

spective global minimizers of fi(x),i = 1,...,n over x E C. Let Fi* =

F(x_),i = 1,..., n. Let • be the n × n matrix whose ith column is Fi* - F*.

Then the set of points in _'_ that are convex combinations of Fi*, i.e.,



{q)w : w E ,_n,_i-__lWi = 1, wi _> 0}, is referred as the Convex Hull of
Individual Minima.

Tile set of attainable objective vectors, {F = F(.r) : x E C} is denoted

by )c. so F : C _ 5c, i.e.. C is mapped by F onto .7-. The space ,_n which

contains 5c is usually referred to as the objective space. The map of C

under F in the objective space is often called the multi-loss map 2 (bi-loss

map, if n = 2). We shall denote the boundary of )t- by 0.T. The set of all

Pareto optimal points is usually denoted by 7). The complete curve/surface

of Pareto minima (continuous or not) is often referred to as the trade-off

function (see p9, Haimes, Hall and Freedman [8]).

CHIM+: Let CHIMoc be the affine subspace of lowest dimension

that contains the CHIM. Then CHIM+ is defined as the smallest simply-

connected set that contains every point in the intersection of 09r and CHIMec.

More informally, consider extending (or withdrawing) the boundary of the

CHIM simplex to touch 0_, the 'extension' of CHIM thus obtained is

defined as CHIM+.

Henceforth, it shall be assumed that the objective functions have been

defined with the shadow minimum shifted to the origin, so that all the

objective functions are non-negative, i.e., F(x) is redefined as:

F(x) +-- F(x) - F*.

We observe that in Fig.l, which shows the set 5r in the objective space, the

point A is F_, B is F_, O is the shadow minimum (and the origin), the

broken line segment AB is the CHIM, while the 'arc' ACB is the set of all

Pareto minima in the objective space; alternately, the trade-off curve. In

this (and any) problem with n = 2 (i.e., bi-objective), CHIM = CHIM+

and the matrix (I) is anti-diagonal.

3 Central Idea

The pivotal idea behind our approach will be introduced by means of a sim-

ple observation: the intersection point between the normal emanating from

2This terminology is widely used in game theory.
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Figure 1: A typical bi-loss map

any point in the CHIM and the boundary 0J c is probably a Pareto opti-

mal point; the point of intersection closest to the origin is a Pareto minimal

point (while the one furthest is a Pareto maximal point). We say 'probably'

because this may not always be true, e.g., when the boundary is 'folded'

(see Fig.2). But it is true when the trade-off surface in the objective space

is convex, which happens in almost every application found in the literature

(see for example the problems in Refs. 1, 2 and 7).

Given a convex weighting w, _w represents a point in the CHIM. Let fi

denote the unit normal to the CHIM simplex pointing towards the origin;

then ¢w + tfi, t E _ represents the set of points on that normal. Then the

point of intersection between the normal and the boundary of 9v closest to

the origin is identical to the solution of the following subproblem:

max t
X,t

s.t. Cw + t_ = F(x)

h(x) = 0 (NBI_)

9(,*)< o
a<x<b.

The constraints ¢w + th = F(x) ensure that the point x is actually mapped

by F to a point on the normal, while the remaining constraints ensure feasi-

bility of x with respect to the constrained set in the original problem (MOP).
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Figure 2: NBI started at Q converges to P (locally Pareto optimal), whereas

the corresponding globally efficient point would have been P*.

The subproblem above shall be referred to as the NBI subproblem, often

written as NBIw (since w is the characterizing parameter of the subprob-

lem), and solutions of these subproblems will be referred to as NBI points.

The idea is to solve NBI_ for various w and find several points on the

boundary of 9r, effectively constructing a pointwise approximation to the

part of the boundary containing the Pareto minimal set.

As indicated earlier, all NBI points are not Pareto optimal points. For

biobjective problems, for every Pareto optimal point there exists a corre-

sponding NBI subproblem of which it is the solution. The same is true for

n _> 3, with one difference: the components of the weight w for NBIw may

not add up to 1. As a simple example, suppose _- is a sphere in 3 3 touching

the coordinate axes, for simplicity. Then the CHIM simplex is the triangle

formed by joining the three points where the sphere touches the axes. Quite

clearly, CHIM _ CHIM+ and there exist points in CHIM + \CHIM

underneath which there are Pareto optimal points on the sphere. However

since these points are not in CHIM, they do not satisfy _' wi = 1. Thus,

by solving NBIw for Y]_ wi = 1, a portion of the Pareto set might be over-

looked for problems with n > 2. However, these overlooked points are likely

to be 'extremal' Pareto points which are not interesting from the tradeoff

standpoint, which is our primary goal.



3.1 Some details

3.1.1 Structure of

The i th column of • is described by

O(:,i) = F(xT) - F'.

Since fi(xT) = f_, clearly,
i) = o.

Furthermore, if x_' is the global minimizer of fi(x), then

¢(j,i) >_ O,j ¢ i.

Thus, a negative element in position (j, k) of ¢ signifies that x_ is not the

global minimizer of f#(x), and fk(x_) < fk(x*k), i.e., xy improves on the
current local minimum of fk(x). This very fortunate occurrence can help

refine the local minimum of an objective by a simple examination of _I,.

Even a zero element of • in an off-diagonal position, say, (j, k), would

signify that x_ is a minimizer of both fj(x) and fk(x), which could make xk

or its nearby points very desirable choices.

3.1.2 Quasi-normal instead of normal direction

The idea of a family of normals intersecting the boundary is valid even

if we do not have the exact normal direction to the CHIM simplex, but

some quasi-normal direction fi which points towards the origin. 'Shooting'

a family of quasi-normal rays towards the boundary also gets us our desired

boundary points. In practice we choose our quasi-normal direction to be an

equally-weighted linear combination of the columns of _, multiplied by -1

to ensure that it points towards the origin. Explicitly,

where e is the column vector of all ones.

The quasi-normal component defined as above has the property that the

NBI point found for a certain w is completely independent of the scales of

the objective functions. In other words, if NBL_ is re-solved with the ob-

jective functions rescaled by arbitrary factors, the NBI point found remains
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unchanged.This factwill beprovedlater.

Giventhat (I)hasnonnegativecomponentsasdiscussedin the previous
subsection,it is clearthat all componentsof (I)earenonnegative.

Eventhougha quasi-normaldirectionwill beusedin ourcomputations,
wepreferto retainthe name'NBI', rather thanchangeit to somethinglike
'QNBI'. The authorshopethat this misnomerwouldnot beconsideredtoo
harshly.

3.1.3 Further insight: NBI and goal programming

Since t is being maximized in the NBI subproblem and _w + tfi = F(x),

x E C, this maximization subproblem attempts to find a feasible point x as

far from a 'target' point ¢w as possible, with fi _>0 (componentwise) guar-

anteeing nonincrease in the components of F(x) relative to the components
of (Pw.

This is similar to goal programming. If we take the Pareto set to be

convex in the objective space, 'equality goal programming '3 can be thought

of as NBI where the direction fi is one of the canonical basis vectors ei (i.e.

with 1 in the i*h position and 0 in the rest). To be precise, the subproblem

NBI,,, with fi = ei has the same solution as the following goal programming

problem:
rain f/(x)

x

_.t. fj(x) = (_u,)(j), j = 1,..., n, j g: i

xEC,

where ((_w)(j) denotes the j_h component of the vector _w.

Though posing the goals as equalities is untraditional, this kind of sub-

problem above for obtaining a Pareto optimal point is discussed in Lin[3]

and [9].

3Preferring to goal programming where the goal constraints are equalities instead of

inequalities.



3.1.4 Efficiently solving the subproblems

The following simple observation plays a key role in lowering the computa-

tional expense involved in solving the NBI subproblems:

Consider weight vectors w and _ such that w is 'close to' ff_, i.e., Ilu,-ff:ll

is 'small' in some norm. Then, it is reasonable to expect that the solution

(x*, t*) of NBI,, and the solution (_*, [') of NBI_ are 'close to each oth-

er'. Assume that we have solved NBI_, first and already have the point

(._*,t*). Then with (._*,/*) as the starting point for solving NBI,_, the NBI

subproblem solver can be expected to converge in a few iterations at a fast

local convergence rate 4. It is this aspect of our algorithm that gives it the

flavor of a continuation-type method.

Since we already have the individual minima of the functions, i.e., the

vertices of the CHIM simplex, we start at x_ and solve a 'nearby subprob-

lem', and then a subproblem close to the one just solved, and so on.

Let us illustrate the above strategy for a biobjective problem. The

weights w for only two objectives can be expressed as [/3, 1 -/3], /3 E [0, 1].

We can take t3 to assume the values:

where (5 < 1 is the (uniform) spacing between two consecutive wl values

and k = I[_], i.e. the greatest integer < ½. Then the set of 'uniformly

distributed' weights is given by [/3, 1 - 3], where/3 ranges over the values as

above.

Now, assuming (f << 1 (say ($ = 0.05), the minimizer of f2(x), i.e., x_, is

expected to be a small perturbation of the solution to the NBI subproblem

with w = [& 1 - (f]. Thus the NBI subproblem with this w is solved starting

from x_, and its solution is used as the starting point for solving the NBI

subproblem with w = [2(5, 1 - 26], and so on, until the last weight is reached.

Of course. 'ordering tile subproblems' may not be so obvious for prob-

lems with more that two objective functions, but can still be achieved, as

described in the next section.

4Q-quadratic if exact second derivatives are used, superlinear if a secant approximation
like BFGS is used.



4 Generating w and ordering the subproblems for

more than two objectives

In this section, we shall describe a (data) structure which simultaneously

enables the generation of weights w and ordering the subproblems in a man-

ner amenable not only to efficient solution but also to parallelization.

4.1 Generating w

Let us assume that for an n-objective problem, 6j > 0 is tile uniform spacing

between two consecutive wj values (i.e., tlle 'stepsize' on the jth component
1

of w) for j = 1..... n- 1. For simplicity, let us also assume that _ is an

integer.

The possible values that can be assumed by Wl are

[0,61,261,..., 1].

Define ml = _-_. Then the possible values of w2 corresponding to wa = m151

(all the wi's must add up to 1) are

[0, 52,262,..., k252]

where k2 = I[L__] = I[__2 _ ].

Now define m2 = _-_:. Then the possible values of w3 corresponding to
W1 -- ??_I(_1 and w2 - m2(_2 are

[0, 53,263,..., k353]

where k2 = I[ 1-wl-w2]Sz J ---- "kI'[1-m151-rn252153 J"

Thus, corresponding to wi = mi6i, i = 1,...,j - 1, the possible values

ofwj for j=2 ..... n-lare

[0,6j,2_j,...,kj_j],

where

kj = i[1- Ei-_ mi6i.]
6j
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Finally the lastcomponentof w is defined as

n-I

Wn = 1 -- E wi.

i=1

Clearly, the entire data structure above can be thought of as a tree where

the number of children varies with the node and generation. However, a tree

structure is clearly unnecessary for implementation; all that requires storage

are the numbers _fj. However the tree is useful as a conceptual aid.

Of the subproblems generated by the weights in the above tree, n (with
6,

w = ei) are already solved while finding F*. Also note that since _ is not
necessarily an integer Vi < j, the spacings between 'the last two' values of

w_ may not be uniform.

Special case: Equal stepsizes on all wi

Let (fi = if, i = 1,..., n - 1

Also assume that ½ = p is an integer.

As before, tile possible values of wl are

[0, 6,2g,..., 1]

Then the possible values of wj corresponding to wi = mi6i, i = 1,...,j- 1
for j=2 .... ,n-1 are

j-1

[o,6,2z,..., (p-
i=1

l_V'n-1As before, w_ = _i=a wi, and now all the w_ values are uniformly spaced.

4.2 Ordering the subproblems

Each path from the root of the tree (the topmost node) to a leaf (a member

in the bottommost generation) represents a unique weight w. It should also

be observed that the w vectors are already ordered on the basis of 'nearness'

as one traverses the tree breadthwise. Thus a strategy for picking the order

10



of thesubproblemscouldbeto startwith theleftmostone(whichhasw = e_

and is already solved) and solve the next one in the Wn-l generation (which

is w_-i = 5,-1, w, = 1 - 5_-1), then the next one in the w_-i generation

( wn-1 = 25n-1, w, = 1 - 25n-1), and so on until all the subproblems for

wi = 0, i = 1, ..., n - 2 have been solved. Then we move to the next node

in the u',-2 generation (i.e., with wi = 0, i = 1,...,n - 3, u,_-2 = 5,-2)

and visit all the children of this node, with the starting points of the NBI

subproblems chosen as the corresponding NBI subproblem solutions at the

previous node.

This is where the scope for parallelization comes in. The solution of

the first subproblem at the second node in the w_-2 generation didn't have

to wait until all the subproblems in the first node were solved. The first

subproblem in the second node of the w_-2 generation with w,-2 = 5_-2,

Wn-1 _ 5n-l, Wn : 1- 5n--2 --5n-I could be solved immediately after

solving the first subproblem in the first node with w_-2 = 0, wn-1 = 5,_-l,

u'n = 1 - 5,-1. Thus the first subproblem in the second node can be solved

in parallel with the second subproblem in the first node, ..., and the k ta

subproblem in the second node can be solved in parallel with the (k + 1) th

subproblem of the first node. Further,the k th subproblem in the third node

can be solved in parallel with the (k + 1) th subproblem of the second node,

with the solution of the k th subproblem of the second node as the starting

point, and so on. This entire process of efficient parallelization is one of the

topics of our future research.

5 Relationship between the NBI subproblem and

minimizing a linear combination of the objec-

tives

In this section we illustrate how the NBI subproblem is related to the popular

method of minimizing a convex combination of the objectives. For ease of

notation, we shall assume that the problem only has equality constraints,

which can be assumed without loss of generality g. Let c_ E (?R+ U {0}) _,

__,_ ai = 1, denote a positive, convex weighting of the objectives. The

weighted linear combination problem for obtaining a Pareto optimal point

gh{x) can be thought of as the equality constraints augmented by the active set of

inequality constraints and bounds

11



is then written as

min aTF(x)
X

s.t. h(x) = 0. (1)

The solution of a problem like above will often be referred to as an LCpoint,

and the problem denoted by LCo. The 'first part' of the KKT conditions

for optimality 6 of (x*, A*) for problem (1) states that the gradient of the

Lagrangian with respect to x should vanish at (x*, A*), i.e.,

vxF(x')a + vxh(z')_" = 0 (2)

,; (which has aSimilarly, if w denotes the vector of weights in .%BI_. very

different meaning from the weights a'z in the linear combinations subprob-

lem), the NBI subproblem can be written as

s.t. F(x) - Ou,- t/7 = 0

h(x) = 0.

Then the first part of the KKT conditions states that the gradient of the

Lagrangian with respect to (x, t) should vanish at (x*, t*, A( 1)*, A(2) *) , i.e.

V_F(x')_ (1)"+ V_h(x')_ (2)"= o (3)

-1 + ?_T)_(1). = 0,

where A (I) E _ represents the vector of multipliers corresponding to the

constraints Ou, + t_. - F(x) = 0, and A (2) E _n_ denotes the multipliers of

the equality constraints h(x) = O.

Claim:

Suppose (x*, t*, A(1)*, A(2)*) is tile solution of NBI_.. Now define tile com-

ponents of the vector _ as

A}x) *
O_i --

Era},/-

6Karush-Kuhn-Tucker conditions, or alternately the first order necessary conditions for

optimality.

12



Then, problem ( 1) with the above convex weighting vector ct has the solution

[x*, A* - 1

P roof:

Dividing both sides of (3) by the scalar _ AI1)_ and observing that h(x*) =

0, the equivalence between (2) and (3) becomes obvious.

However, quite clearly, if for some i. the sign of AI1)* is opposite to that

of _ _!l). then the vector ca has a negative component and does not qual-

ify as a weight for problem (1). In such a case, either the Pareto optimality
of the NBI point (x*, t*, A(1)*, A(2)*) is questionable, or the Pareto point lies

in a nonconvex part of the Pareto set 7.

Also observe the tacit assumption that _ AIx)* ¢ 0.

Just as the analysis above suggests a method for obtaining a for prob-

lem LCo given the corresponding solution of NBI_., one can also obtain the

NBI point corresponding to a given solution of problem LC_ with very little
effort.

Suppose (x*, A*) solves problem LC_. Let (if', t*) be the solution of the

(n + 1) x (n + 1) linear system

¢u, + tit = F(x*)

_--_wi = 1.
i=1

Then (x _, A') corresponds to the solution of NBIw with w = if,, i.e., the

solution of NBIe is

A*
(X.,t. /k(1)., _ Cto,Tit ')_(2)*- ca,Tit)"

P roof:

TPareto points in nonvonvex parts of the Pareto set cannot be obtained by minimizing

a linear combination of the objectives a proof of which will appear in a future article

13



Dividing (2) on both sidesby _Trt (assumed nonzero s) and observing

that A(1). defined above satisfies hTA (1)* = 1, it can be seen that the first part

of the KKT conditions for NBI_v holds. Further observing that, h(x*) = 0

and _w + tfi = F(x*), the required equivalence between LCo and NBI_v
follows.

6 Proof of independence with respect to function

scales using the quasi-normal

In this section we shall prove that the NBI point found using the quasi-

normal fi and a particular w is independent of how the individual functions
are scaled.

Let the objective functions be scaled by positive scalars si as

fi(x) 6-- s, fi(z), i = 1,...,n.

In other words, if s is the vector with components si and S = diag(s), then

F(z) SF(z).

Consequently

VCF(x) +-- V_F(x)S

q_ = S¢,

The quasi-normal direction fi = -¢e after scaling becomes = -S_I,e.

Claim:

If (x', t', A(1)', A(z)') solves tile unscaled NBI_. (i.e. with S = In), then

(x', t', S-1A (1)*, A(2).) solves 9 NBIw with the functions scaled as above.

Proof: Since (x', t', A(1)', A(2}') solves the unscaled NBI_ (still with

only equality constraints as in the previous section),

VxF(x')A (x)" + Vzh(x*)A (2)" = 0

SSince a has nonnegative components (not all zero) and h has negative components,

the assumption holds.

9Here 'solves' means 'finds a stat,ionary point of the nonlinear programming problem'.

14



rtTA (1)* --_ 1

q'w + t*_ = F(x*)

h(x') = 0.

The first equation can be rewritten to state that the following holds:

(VrF(x*)S) (S-1A {D*) + Vxb(x*)A (2)" = O.

Tile second equation implies

erdpr_(1)* -- ].

=_ eT_pTss-1)_ (1)* = 1.

Since S = S T, the above is the same as

(cT(s(I))T)(s-I_ (1)*) _-- 1.

(4)

(5)

Tile third equation can be rewritten as

• w + t*(Pe = F(x*)

=_ S_w + t*S¢,e = SF(x*). (6)

Clearly, equations (4),(5) g: (6) imply that (x*, t*, S-1_ (1)*,)_(2)*) solves

NBI,L. with the functions scaled by S.

(QED)

Tha above result does not depend on ¢ being the vector of all ones and

consequently holds if fi is scaled by a factor, say, a normalization constant.

The above result suggests that no matter how disparately the different

functions might be scaled, NBI with the quasi-normal finds a set of points

as if the functions were all scaled to the same order of magnitude.

7 Advantages of using NBI

• Finds a uniform spread of Pareto points: Consider any method

which parametrically combines all the objective functions into a single

objective and finds efficient points by minimizing the single objective

for various values of the parameters. Then, in general, the mapping

15



from the set of parameters to the set of Pareto optimal points is not

one-to-one. Thus it might so happen that minimizations over several

different parameters produces the very same point each time, resulting

in fruitless computational expense- this is never the case with NBI.

Moreover, in the absence of convexity, "Pareto-optimal solutions ob-

tained by this method are often found to be so few, or the correspond-

ing indexes so extreme, that there seems to be no middle 'ground' for

any compromise, although such 'ground' may actually exist" - Lin [9].

For examples, refer to Lin [9], Katopis and Lin [10], Lin [11].

The interrelationship between the linear combinations subproblem and

the NBI subproblem provides more insight into why the linear com-

binations technique fail to give a uniformly distributed set of Pareto

optima. By fixing the weights a in subproblem LC, we are in effect fix-

ing the multipliers of the corresponding NBI subproblem, thus partly

restricting the solution of the resultant subproblem. Even if the Pareto

optima are uniformly distributed in the Pareto set, there is no reason

why the corresponding multipliers have to be uniformly distributed.

However, the weights in the linear combinations approach are often

very desirable because they give an idea of the relative importance of

the objectives. Thus obtaining the NBI points, which are uniformly

distributed, and then finding the corresponding weights a for the NB!

points can be very useful.

• Advantages over homotopy techniques: NBI improves over ho-

motopy/continuation techniques for tracing tile curve of Pareto opti-

mal solutions, like the one discussed in Rakowska, Haftka & Watson

[4], in the following respects:

- It is applicable for more than two objectives For a multiobjective

problem with more than two objectives the homotopy parameter

is not a scalar and the associated differential equations turn out

to be a system of nonlinear partial differential equations with not

readily available boundary conditions, rather than an ordinary

initial value problem, as in the case of two objectives. Thus

extending homotopy techniques to handle n > 2 is very difficult.

Oil the other hand, NBI can be extended to handle more than

two objectives quite easily.

- It does not require exact Hessian. Even for a biobjective problem,

solving the homotopy boundary value problem requires exact sec-
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ond derivative information (i.e., the Hessian of the Lagrangian),

whereas the NBI subproblem solver requires only a secant ap-

proximation of the Hessian like BFGS.

- It can bypass tracking active sets. For problems with inequality

constraints or explicit bounds on variables , homotopy techniques

need to keep track of the changes in active sets of the inequality

constraints or bounds meticulously in course of the Initial Value

Problem integration, which can present difficulties if the number

of inequalities or bounds is large. On the other hand an interior

point NLP solver used as the NBI subproblem solver would handle

this situation quite efficiently, and would not have a problem with

frequent changes in the active set.

• NBI improves on other traditional methods like goal programming in

the sense that it never requires any prior knowledge of 'feasible goals'.

It improves on multilevel optimization techniques from the tradeoff

standpoint, since multilevel techniques usually can only improve only

a few of the 'most important' objectives, leaving no compromise for
the rest.

8 A note on local versus global

It is worth observing here that unless the individual minima of the objec-

tives obtained at the outset are guaranteed to be global minima there is no

guarantee that NBI produces solutions that are globally Pareto optimal. In

fact, as pointed out earlier, there is no guarantee that every solution pro-

duced by NBI is even locally Pareto optimal. All we can conjecture is that

if the individual minima of the functions happen to be global minima and

if we start NBI from every point on CHIM + UCHIM, the set of points

thus obtained would contain all the globally Pareto optimal points, provided

the boundary of )c is not 'folded'. However, even when 'folded', the point

obtained could be locally Pareto optimal (see fig.2).

Not being able to find globally Pareto optimal points is a drawback inher-

ent in every method that finds a large number of efficient points of MOP.

In homotopy methods, it would involve finding the global minimum of one

of the two objectives in the very beginning. In methods which find efficient

points by minimizing a single objective, only a global minimum of the scalar-

ized objective would correspond to a globally efficient point. Even though
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f l(x)

Figure 3: The normal from N intersects the boundary at E, but values of

the objectives at P are each less than the corresponding values at E, hence

E is not Pareto optimal.

a local minimum would still correspond to a locally efficient point, there is

no guarantee that minimizing a single objective produces a local minimum

since most single objective optimization algorithms only converge to a KKT

point of the problem, i.e. one which only satisfies necessary conditions for

being a minimum and could thus well be a saddle-point (and not even a

local minimum!).

Given the shortcomings of global optimization applied to nonconvex prob-

lems, we choose to remain satisfied with the Pareto optimal points obtained

by NBI, in spite of the fact that they may not be globally efficient.

9 A Numerical Example

Below is a brief account of employing NBI techniques on a small biobjective

problem, stated below:

[fl(x)=z_+x_ 222 ]
+ x 3 + x 4 + x_

min f2(x)=3x1+2x2_. .+O.Ol(x4_xs)3

s.t. x1+2x2-x3-0.5x4+x_=2

4xl - 2x2 + 0.8X3 Jr 0.6X4 + 0.5X_ = 0
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.r_+x_+x32+x42+x52_<10.

NBI usingthe actualnormalto the CHIM simplex (a line segment in

this case) was run three times on this problem for 21 different weight vec-

tors w: first on the original problem, then on the problem with fl scaled by

a factor of 5 (to increase the disparity between the scales of the objective

functions) and then with fl scaled by a factor of 10. The results in the

following table shows that NBI succesfully produces a uniformly distributed

set of Pareto optimal points even if the objective functions are scaled dis-

parately. (Note that the tabulated Pareto optimal function values have all

been converted back to their original scales.)

Weights Objective values Objective values Objective values

(wl, w2) (original scale) (]'1 scaled by 5) (fl scaled by 10)

0.00 , 1.00 10.0000 ,-4.0111 10.0000,-4.0111 10.0000,-4.0111

0.0.5 , 0.95 9.4717 ,-3.7902 9..5249,-3.8126 9.5270,-3.8135

0.10 , 0.90 8.9453 ,-3.5665 9.0499,-3.6113 9.0541,-3.6131

0.15 , 0.85 8.4208 , -3.3398 8.5750,-3.4069 8.5812,-3.4095

0.20 , 0.80 7.8985 , -3.1097 8.1002,-3.1991 8.1083,-3.2027

0.25 , 0.75 7.3785 ,-2.87.59 7.6255,-2.9876 7.6354,-2.9921

0.30 , 0.70 6.8612 ,-2.6381 7.1508,-2.7720 7.1626,-2.7773

0.35 , 0.65 6.3469 ,-2.3958 6.6763,-2..5517 6.6897,-2.5580

0.40 , 0.60 .5.8359 ,-2.1483 6.2020,-2.3263 6.2170,-2.3335

0.45 , 0.55 5.3286,-1.8951 5.7277,-2.0950 5.7442,-2.1032

0.50 , 0.50 4.8256 .-1.6353 5.2537,-1.8570 5.2715,-1.8661

0.55 , 0.45 4.3275 ,-1.3679 4.7799,-1.6112 4.7989,-1.6213

0.60 , 0.40 3.8353, -1.0916 4.3063,-1.3562 4.3263,-1.3672

0.65 , 0.35 3.3499,-0.8046 3.8329,-1.0903 3.8538,-1.1022

0.70 , 0.30 2.8730 ,-0.5047 3.3600,-0.8107 3.3813,-0.8237

0.75 , 0.25 2.4067 ,-0.1885 2.8875,-0.5141 2.9090,-0.5281

0.80,0.20 1.9542,0.1490 2.4155,-0.1947 2.4368,-0.2097

0.85 , 0.15 1.5209 , 0.5159 1.9444, 0.1567 1.9649, 0.1406

0.90 , 0.10 1.1164 , 0.9272 1.4747, 0.5586 1.4932, 0.5413

0.95 , 0.05 0.7635 , 1.4178 1.0074, 1.0583 1.0222, 1.0398

1.00 • 0.00 0.5551 , 2.1306 0.5551, 2.1306 0.5551, 2.1306

The plots of Pareto optimal objective vectors as tabulated above for

the original and scaled problems as shown in Fig.4 and Fig.5, reveal very

slight difference: with the first objective scaled, one point on the F(x_) end
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movesa little further away.However,usingthe quasi-normalfi, eventhis
slight nonuniformityof distributionof Paretopointsis eliminated(seeFig.
6). The Paretopointsobtainedusingthe quasi-normal,independentof the
scaleon fl, and are tabulated below:

Weights
0.00, 1.00

0.05, 0.95

Objective values

10.0000 , -4.0111

9.4254, -3.7706

0.10, 0.90 8.8546 , -3.5276

0.15, 0.85

0.20, 0.80

0.25, 0.75

8.2882 ,-3.2818

7.7264 ,-3.0329

7.1698 ,-2.7807

0.30, 0.70 6.6189,-2.5247

0.35, 0.65 6.0743 ,-2.2647

0.40, 0.60

0.45, 0.55

0.50, 0.50

0.55, 0.45

0.60, 0.40

0.65, 0.35

O.70, 0.3O

0.75, 0.25

0.80, 0.20

0.85, 0.15

0.90, 0.10

0.95, 0.05

1.00, 0.00

5.5368 ,-2.0000

5.0072 ,-1.7302

4.4866 ,-1.4546

3.9764 ,-1.1722

3.4781 ,-0.8820

2.9939 ,-0.5827

2.5266 ,-0.2724

2.0801 , 0.0514

1.6597,0.3922

1.2740,0.7556

0.9370, 1.1506

0.6754 , 1.5947
0.5551 .2.1306

The method of linear combinations was run thrice on the same problem,

with the weight vectors e assuming the same 21 uniformly spread values as
the w vector above I°.

When run on the original problem, the minimizer of f2(x) was found six

times for six different c_, and there was a considerable gap 'in the middle' of

the Pareto set [see fig.(7)].

With fl scaled by 5! the point found six times earlier was found only twice 11,

1°The efficient solution scheme, i.e., starting the solution of a subproblem from the

optimal point of a 'nearby subproblem' was used here too.

l lHeavily weighting the first objective made the minimizer move away from x_.
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but theParetooptimalvectorsobtainedwereconcentratedat theF(x_) end

and no 'middle ground for compromise' was captured [see fig.(8)].

With ft scaled by 10, the point repeated earlier was found only once, though

the clustering at the F(x_) end increased [see fig.(9)].

The Pareto optimal vectors obtained using linear combinations are tab-

ulated below:

Weights

(Ol,
0.00,1.00

0.05,0.95

0.10,0.90

0.15,0.85

0.20 , 0.80

0.25 , 0.75

0.30,0.70

0.35 , 0.65

0.40,0.60

0.45,0.55

0.50,0.50

0.55 , 0.45

0.60,0.40

0.65 , 0.35

0.70, 0.30

0.75, 0.25

0.80,0.20

0.85,0.15

0.90 , 0.10

0.95 , 0.05

1.00 , 0.00

Objective values

(original scale)

10.0000 ,-4.0111

10.0000 ,-4.0111

10.0000 ,-4.0111

10.0000 ,-4.0111

10.0000 ,-4.0111

10.0000 ,-4.0111

8.9403 ,-3.5644

4.5379 ,-1.4822

2.7307 ,-0.4109

1.8319, 0.2473

1.3357,0.6928

1.0425, 1.0147

0.8615, 1.2583

0.7463, 1.4492

0.6719, 1.6029

0.6236, 1.7295

0.5926, 1.8356

0.5734, 1.9258

0.5622,2.0035

0.5567, 2.0711

0.5551, 2.1306

Objective values

(fl scaled by 5)

10.0000,-4.0111

10.0000,-4.0111

4.1857,-1.2896

1.6131, 0.4330

1.0180,1.0451

0.7975, 1.3592

0.6953,1.5506

0.6412, 1.6796

0.6100, 1.7725

0.5909, 1.8425

0.5788, 1.8973

0.5707, 1.9413

0.5654, 1.9773

0.5618, 2.0075

0.5593, 2.0331

0.5576, 2.0551

0.5565, 2.0741

0.5558, 2.0909

Objective values

(fl scaled by 10)

10.0000, -4.0111

4.8211,-1.6330

1.1634, 0.8741

0.7689, 1.4083

0.6559, 1.6416

0.6100, 1.7724

0.5876, 1.8563

0.5754, 1.9146

0.5682, 1.9576

0.5637, 1.9905

0.5608, 2.0165

0.5589, 2.0376

0.5576,2.0551

0.5567, 2.0698

0.5561, 2.0823

0.5557, 2.0931

0.5554,2.1025

0.5553,2.1108

0.5554,2.1057

0.5551, 2.1188

0.5551,2.1306

0.5552, 2.1181

0.5551,2.1247

0.5551,2.1306

Clearly, the inability of tile method of linear combinations in sufficiently

capturing the 'middle ground' of the Pareto set renders it fairly useless as a

means of studying the tradeoff between the conflicting objectives.
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9.1 Function scaling implicit in NBI

Even though the NBI using the quasi-normal component is unaffected by the

function scales, this property comes with a price. As the functions get more

disparately scaled, the Pareto set gets more 'stretched', and consequently the

NBI points get further apart from each other. Consequently, solving an NBI

subproblem starting from the solution of the same nearby subproblem takes

more iterations to converge. This was observed in the numerical example

above and motivates the need to scale the functions properly to remove this

disparity in scales.

Geometrically, it can be perceived that if the vertices of the CHIM

simplex are almost equidistant from the origin, i.e. the quantities

I[F(x_) - F*II , j = 1.... ,n

are almost equal, then the quasi normal direction fi is almost normal to the

CHIM simplex. This would achieve the 'minimally stretched' Pareto set we

want and could also be a good scaling for the problem in the sense that all

the functions would be about the same order of magnitude, and thus reduce

possible ill-conditioning.

For the biobjective problem, _5 is antidiagonal; thus a scaling that would
achieve the above is obvious:

fl
fl

f2
I2÷

which gets each vertex of CHIM to be unit distance from the origin.

However, the solution may not be so transparent for more than two ob-

jectives, and it may not be possible to get all the vertices exactly equidistant

from the origin. So now we shall attempt to find function scMings di > 0
such that the functions scaled as

fi _ v_if_

will have the property that the variance among the scaled distances of the

vertices from the origin, i.e.

ltv/-D(F(x_)- F*)II 2, j = 1.... ,n
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will be minimized (D = diag(d), d represents the vector with components

di).

Let t'j = IIv/-D(F(x'_)- F*)II 2, i.e.,

vj =
i=1

where ¢i.j is the i th row jth column entry of the matrix (I).

The mean square distance of the vertices is defined as

1 n 1 n " 2

n
= i=1 j--1

The variance quantity to be minimized is given by

n

j=l

i.e.?

n n n 1_-2_ 2 2V(d) = di¢i2j di(n
j=l i=l "= j=l

Let A be the matrix with components ai,j given by

aij = ¢i2,j- n i,k.
k=l

Then

i.e.,

n n

V(d) = E(___ diai,j )_;
j:l i----1

V(d) = dT AATd = IIATdll 2.

This quadratic function is convex in d, and has an unconstrained mini-

mizer at d = 0. Thus we shall demand a specific value of f), which represents

an average distance of the CHIM simplex from the origin 12 and is roughly

12Using the mean distance instead of the mean square distance for this constraint would

result in loss of convexity.
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the sameorderof magnitude as a typical function value of any objective

encountered in tile computation. Say we want a typical objective value to

be r, which could be something like 10. Then we would enforce

1 n n

= - di ¢_,j) = r
7/

along with a small lower bound on di. Thus the optimization problem to be

solved to obtain our 'optimal' scales is

min V(d) = dr AAr d
d

n n

s.t. E _)i,j) "_ nT"

i=1 j=l

di >= 10 .8 , i = 1, .... n.

Thus we can see how the matrix • suggests an 'improved scaling' of the

objective functions, which is a bonus in the NBI approach.

10 Conclusion

An algorithm was presented for finding Pareto optimal points of any smooth,

constrained multiobjective problem with essentially any number of objec-

tives. One question that is left open is how the user would select the final

design point from the Pareto set generated by NBI (or any other algorithm

which generates the Pareto set). For two or three objectives, the gener-

ated Pareto curve/surface can be visualized with standard 2-D or 3-D plots,

which may be all the user needs to arrive at a final design point. However

the visualization process may be complicated for more than three objectives,

and how helpful it will be in guiding the user towards a better choice may

depend on factors like the psychological aspects of the visualization. One

procedure that could perhaps be useful is to have the user specify another

'cost' or 'utility' function, whose value could be reported at each of the

Pareto optimal points generated by NBI, and the user could make his/her

final choice based on this 'cost'. Also, if there are more than three objec-

tives and if it is possible to set up a hierarchical order of preference in blocks

of two or three (e.g. f2, ]'.4,f5 are more important than fl, f3), the Pareto

points for the combined problem could be visualized for each of the blocks,

starting at the most important, and the user could narrow down his/her
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preferences down the blocks.

Further research is in progress regarding the above issue and also re-

garding the development of efficient nonlinear programming techniques for

solving the NBI subproblems and parallelizing the entire algorithm.

11 Acknowledgements

The authors would like to thank Paul Uhlig, Dept. of Mathematics, Rice

University for several insightful discussions, Dr. Jagannatha Rao, Dept.

of Mechanical Eng., University of Houston, for providing motivation and

helpful comments, Dr. Natalia Alexandrov and Dr. Edward Dean, MDO

division, NASA-Langley Research Center for their helpful comments on

user preferences, and Jeffrey Hittinger, Aerospace Engineering, University

of Michigan, Ann Arbor for a helpful discussion on data structures.

References

[1] H. Eschenauer. J. Koski and A. Osyczka. Multicriteria Design Optimiza-

tion. Berlin, Springer-Verlag, 1990.

[2] Roman B. Statnikov and Joseph B. Matusov. Multicriteria Optimization

and Engineering. New York, Chapman & Hall_ 1995.

[3] J. G. Lin. Three Methods for Determining Pareto-Optimal Solutions

of Multiple-Objective Problems. Directions in Large-Scale Systems, pp.

117-138. Edited by Y. C. Ho and S. K. Mitter. New York, Plenum Press,

197.5.

[4] J. Rakowska, R. T. Haftka and L. T. Watson. Tracing the Efficient
Curve for Multi-Objective Control-Structure Optimization. Computing

Systems in Engineering. Vol. 2, No. 6, pp. 461-471, 1991.

[5] J. R. Rao and P. Y. Papalambros. A Non-linear Programming Continu-
ation Strategy for One Parameter Design Optimization Problems. Pro-

ceedings of ASME Design Automation Conference, Montreal, Quebec,

Canada, Sept. 17-20, 1989, pp. 77-89.

25



[6] B. N. LundbergandA. B. Poore.Bifurcations and Sensitivity in Para-

metric Programming. Proceedings of Third Air Force/NASA Sympo-

sium on Recent Advances in Multidisciplinary Analysis and Optimiza-

tion, Sept. 24-26, 1990, San Francisco, CA, pp. 50-55.

[7] J. Koski. Multicriteria Truss Optimization. Multicriteria Optimization

in Engineering and in the Sciences. Edited by W. Stadler. New York,

Plenum Press, 1988.

[8] Y. Haimes, W. Hall and H. Freedman. Multiobjective Optimization in

Water Resources Systems. Amsterdam, Elsevier Scientific Publishing Co,

1975.

[9] J. G. Lin. Multiple-Objective Problems: Pareto-Optimal Solutions by

Method of Proper Equality Constraints. IEEE Transactions on Auto-

matic Control. vol. AC-21, no.5, October 1976, pp. 641-6.50.

[10] G. A. Katopis and J. G. Lin. Non-inferiority of Controls under Double

Performance Objectives: Minimal Time and Minimal Energy. Proceed-

ings of -[th Hawaii Int. Conf. Syst. Sci., Honolulu, Hawaii, Jan 1974, pp.

129-131.

[11] J. G. Lin. Circuit Design under Multiple Performance Objectives. Proc.

1974 IEEE Int. Syrup. Circuits & Systems, San Francisco, CA, pp. 549-

.552, Apr. 1974.

26



3

Pareto points obtained using NBIgeneral3

I I I I 1

2

0

U,.

-2

-3

-5
0

I I I I I

2 4 6 8 10

F(1)

Figure 4: Pareto optimal vectors in the objective space using NBI with

actual normal on the original problem
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Pareto points obtained using NBIgeneral3
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Figure 5: Pareto optimal vectors in the objective space using NBI with

actual normal on the problem with fl scaled by 10

12

28



3 I I I I I

2

0

LI_

-2

-3

-4

-5
0

)K

I I I I I

2 4 6 8 10

F(1)

Figure 6: Pareto optimal vectors in the objective space using NB] with

quasi-normal on the problem with fl scaled by 10
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Efficient points obtained by minimizing convex combinations of objectives
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Figure 7: Pareto optimal vectors in the objective space using the method of

linear combinations on the original problem
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3
Efficient points obtained by minimizing convex combinations of objectives
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Figure 8: Pareto optimal vectors in the objective space using the method of

linear combinations on the problem with fl scaled by 5
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3
Efficient points obtained by minimizing convex combinations of objectives

I I I I I

2

0

U_

-2

-3

-4

-5
0

l

I I I I I

2 4 6 8 10

F(1)

Figure 9: Pareto optimal vectors in the objective space using the method of

linear combinations on the problem with fl scaled by 10
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